Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules

نویسندگان

  • Ming Wu
  • Chao Xu
  • Ya-Ling He
چکیده

We investigate the dynamic thermal performance of a molten-salt packed-bed thermal energy storage (TES) system using capsules filled with high-temperature phase change material (PCM), which is identified as a promising low-cost TES system for concentrating solar power (CSP) plants. A transient twodimensional dispersion-concentric (D-C) model is modified to account for the phase change process within capsules so as to determine the temperature distribution and phase change front within each capsule. Using the model, detailed characteristics of heat transfer between molten salt and the packed PCM capsules are investigated, and a parametric sensitivity analysis is provided. During the discharging process, different variation trends are found for the capsule temperature due to the existence of the isothermal solidification process. As a result, generally there exists a quasi-isothermal region and two thermocline regions for the molten-salt temperature along the tank height, and the molten-salt temperature at the outlet also shows a quasi-isothermal period, during which the molten-salt outlet temperature is very close to the phase change temperature (PCT) of PCM. It is also found that the effective discharging efficiency of the system can be increased by increasing the PCT, decreasing the molten-salt inlet velocity or decreasing the capsule diameter. These results provide suggestions to optimize the design and operational parameters for the system within practical constrains. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comprehensive Study on a Latent Heat Thermal Energy Storage System and its Feasible Applications in Greenhouses

Abstract Energy crisis is a major challenge in the current world. Latent heat thermal energy storage (LHTES) systems are known as equipment with promising performance by which thermal energy can be recovered. In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing PEG1000 as phase change material (PCM). Discussed topics can be ca...

متن کامل

High Temperature Phase Change Materials for Thermal Energy Storage Applications: Preprint

To store thermal energy, sensible and latent heat storage materials are widely used. Latent heat thermal energy storage (TES) systems using phase change materials (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation. Because high-melting-point PCMs have large energy densities, their use c...

متن کامل

Behavior of Packed Bed Thermal Storage

A packed bed thermal storage has several desirable characteristics to be used for energy storage. The behavior of packed bed is predicted by set of differential equations. A numerical solution is developed for packed bed storage tank accounting to the secondary phenomena of thermal losses and conduction effect. The effect of heat loss to surrounding (K1), conduction effect (K2) and air capacita...

متن کامل

Experimental and Numerical Investigations on Al2O3–Tricosane Based Heat Pipe Thermal Energy Storage

The enhancement of operating life cycle of electronic devices necessitates the development of efficient cooling techniques. Therefore, in the present work the effects of employment of Phase Change Material, in the adiabatic section of heat pipe for electronic cooling applications were experimentally and numerically investigated. Tricosane (100 ml) is chosen as PCM in this study, where Al2O3 nan...

متن کامل

Optimization of the PCM-integrated solar domestic hot water system under different thermal stratification conditions

Many researchers have investigated how to increase the overall efficiency of solar-driven thermal systems. Several key parameters, such as collector efficiency and storage tank characteristics, may impose some constraints on the annual solar fraction (ASF) of such systems. In this paper, the behaviour of integrating the phase change material (PCM) in SDHW systems is modelled and optimized n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015